¡@
The Precise Definition of a Limit
¡@
Formal definition of
.
¡@
We say that
, provided that
¡@
Given
, there exists
, such that
whenever 0 <
.
¡@
We say
exists if there exists a real number L such that
.
¡@
Remark :
If
exists, then given
, there exists
, such that
whenever 0 <
and 0 <
.
¡@
Intuitively, if
exists, say L, then
and
can be as close as we want to L by taking both
and
sufficiently close to a (but not equal to a ). So
and
can be as close as we want by taking both
and
sufficiently close to a (but not equal to a ).
¡@
Proof of the remark :
Given
, there exists
, such that such that
whenever 0 <
. If 0 <
and 0 <
, then
<
.
¡@
¡@
Example Show that
.
Idea of the proof :
Given
, we want to find
, such that such that
whenever 0 <
.
¡@
![]()
This tells us one way to find such a
, we should solve the inequality
. If
, then
<
. Assume further that
, we get
¡@
<
![]()
and so
¡@
<
.
¡@
¡@
![]()
¡@
This implies that we should take
to be the minimum of
and
.
¡@
Note that both
and
are positive, in fact
(why ?).
¡@
Proof : Given
, without loss of generality may assume that
, let
¡@
( the minimum of
and
).
¡@
If 0 <
, then
¡@
<
<
![]()
Hence,
<
![]()
and so
<
.
Therefore,
.
¡@
And the proof is completed.
¡@
Note that
, if
then
.
¡@
Alternative proof :
Given
, let
. If 0 <
, then
. So we have
and
<
.
¡@
¡@
Formal definition of
and
.
¡@
We say that
, provided that
¡@
Given
, there exists
, such that
whenever 0 <
.
¡@
We say that
, provided that
¡@
Given
, there exists
, such that
whenever 0 <
.
¡@
¡@
Example Show that
.
¡@
¡@
![]()
Idea of the proof :
Given
, we want to find
, such that such that
whenever 0 <
.
Note that if
then 0 <
, which implies that 0 <
.
Proof : Given
, let
. If
<
, then 0 <
.
So we have
.
¡@
¡@
¡@
¡@
¡@
¡@
¡@
¡@
¡@
¡@