《一百一十一學年度第一學期微積分會考答案卷》(A卷)

姓名	**************************************	老師	
學號		系別	系

	_		
總分(第一部份~第三部份)	初閱	複閱	

第一、二、三部份 合計總分

第一部份:單選擇題

1	В	2	D	3	A	4	送分	5	C
6	D	7	A	8	C	9	В	10	C

初閱	評
複閱	分

第二部份:複選擇題

11	AC 1	12 ACD	13	CD :	14	BD	15	ACD
----	------	--------	----	------	----	----	----	-----

初閱	評
複閱	分

1. Let
$$G(x) = \int_0^\infty t^{x-1} e^{-t} dt$$
.

(A) (3 points) Prove that, for any a > 0, the improper integral $\int_0^\infty e^{-at} dt$ is convergent. [Solution]

$$\int_{0}^{\infty} e^{-at} dt = \lim_{n \to \infty} \int_{0}^{n} e^{-at} dt = \lim_{n \to \infty} \left(\frac{e^{-at}}{-a} \Big|_{t=0}^{t=n} \right)$$

$$= \lim_{n \to \infty} \frac{e^{-an} - 1}{-a}$$

$$= \frac{1}{a},$$
(1pt)

so the improper integral is convergent.

(B) (3 points) Prove that for any $n \in \mathbb{N}$,

$$\lim_{t \to \infty} t^{n-1} e^{-t/2} = 0.$$

[Solution]

As
$$n = 1$$
, $\lim_{t \to \infty} t^{n-1} e^{-t/2} = \lim_{t \to \infty} e^{-t/2} = 0$. (1pt)
As $n > 2$.

$$\lim_{t \to \infty} t^{n-1} e^{-t/2} = \lim_{t \to \infty} \frac{t^{n-1}}{e^{t/2}} \quad \text{[by using the L'Hospital rule]}$$

$$= \lim_{t \to \infty} \frac{(n-1)t^{n-2}}{\frac{1}{2}e^{t/2}} \quad \text{(1pt)}$$

$$\vdots \quad \text{[by using the L'Hospital rule again]}$$

$$= \lim_{t \to \infty} \frac{(n-1)(n-2)\cdots 1\cdot t^0}{(\frac{1}{2})^{n-1}e^{t/2}} \quad \text{(1pt)}$$

(C) (4 points) Prove that G(x) is well-defined on $[1, \infty)$, i.e., to prove the improper integral $\int_0^\infty t^{x-1}e^{-t}\,dt$ is convergent for any $x\geq 1$. [Hint: use (A), (B), and the Comparison Test for Improper Integrals].

[Solution]

By (B), there exists M > 0 such that

$$0 \le t^{n-1}e^{-t} \le e^{t/2}e^{-t} = e^{-t/2}, \quad t \ge M.$$
 (1pt)

On the other hand, thanks to (A) with a = 1/2, $\int_M^\infty e^{-t/2} dt$ converges. (1pt)

Then, by the Comparison Test for Improper Integrals, we see that $\int_M^\infty t^{n-1}e^{-t}dt$ converges for all $n \in \mathbb{N}$, and so does $\int_0^\infty t^{n-1}e^{-t}dt$ for all $n \in \mathbb{N}$. (1pt)

For each x > 1, we have

$$0 \le t^{x-1}e^{-t} \le t^{[x]}e^{-t},$$
 (1pt)

where [x] is the greatest integer function. Since $\int_0^\infty t^{[x]} e^{-t} dt$ converges, we see that $\int_0^\infty t^{x-1} e^{-t} dt$ also converges by the Comparison Test for Improper Integrals.

- 2. Let $h(x) = \frac{1+x^2}{1+x^4}$ for x > 0.
 - (A) (10 points) Evaluate $\int h(x) dx$. [Hint: use the substitution $t = x x^{-1}$ for x > 0] [Solution]

Let
$$t = x - x^{-1}$$
 for $x > 0$, then $dt = (1 + x^{-2}) dx = \frac{x^2 + 1}{x^2} dx$. (2pt)
And $t^2 = (x - x^{-1})^2 = x^2 + x^{-2} - 2$, i.e., $t^2 + 2 = x^2 + x^{-2} = \frac{x^4 + 1}{x^2}$. (2pt)

$$\int \frac{1+x^2}{1+x^4} dx = \int \frac{x^2}{1+x^4} \frac{1+x^2}{x^2} dx \qquad (1pt)$$

$$= \int \frac{1}{t^2+2} dt \qquad (1pt)$$

$$= \frac{1}{\sqrt{2}} \tan^{-1}(\frac{t}{\sqrt{2}}) + C \qquad (2pt)$$

$$= \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{1}{\sqrt{2}}(x-x^{-1})\right) + C \qquad (2pt)$$

(B) (5 points) Evaluate $\int_{1}^{\infty} h(x) dx$.

[Solution]

$$\int_{1}^{\infty} h(x) dx = \lim_{L \to \infty} \int_{1}^{L} h(x) dx \qquad (1pt)$$

$$= \lim_{L \to \infty} \left\{ \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{1}{\sqrt{2}} (x - x^{-1}) \right) \Big|_{x=1}^{x=L} \right\} \qquad (1pt)$$

$$= \lim_{L \to \infty} \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{1}{\sqrt{2}} (L - L^{-1}) \right) \qquad (1pt)$$

$$= \frac{1}{\sqrt{2}} \frac{\pi}{2} \qquad (2pt)$$