2．4 The Precise Definition of a Limit

單選題

1．Consider

$$
f(x)= \begin{cases}-5 x+2 & \text { if } x \geq 0 \\ \frac{-(x+1)^{2}}{4} & \text { if } x<0\end{cases}
$$

When using the $\varepsilon-\delta$ definition to prove that $\lim _{x \rightarrow-1} f(x)=0$ ，the largest δ for $\varepsilon=1$ is
（A） 2 ；
（B） 1 ；
（C） $1 \frac{2}{5}$ ；
（D） $1 \frac{3}{5}$ ．

Ans：B［99 學年度］

2．Let $A=\{0.6,0.7,0.8,0.9\}$ ．
Find the largest number，δ ，in A such that $|\sqrt{4 x+5}-3|<0.6$ ，whenever $|x-1|<\delta$ ．
（A）$\delta=0.6$ ，
（B）$\delta=0.7$ ，
（C）$\delta=0.8$ ，
（D）$\delta=0.9$ ．

Ans：C［100 學年度］

3．Find the maximum positive number δ such that：If $0<|x|<\delta$ then

$$
\left|e^{-x}-1\right|<\frac{1}{2} .
$$

（A） $\ln 3$ ；
（B） $\ln 2$ ；
（C） $\ln \frac{3}{2}$ ；
（D） $\ln \frac{2}{3}$ ．

Ans：C［102學年度］

多選題

1．Which of the following number δ can take such that

$$
\text { If } 0<|x-2|<\delta \text {, then }|\sqrt{x}-\sqrt{2}|<1 \text {, }
$$

（A） $2 \sqrt{2}+1$ ；
（B） $2 \sqrt{2}-1$ ；
（C） 1 ；
（D） 2 ．

Ans：BC［101 學年度］

2．Let $f(x)=x^{2}$ ．Then f is continuous and so $\lim _{x \rightarrow a} f(x)=a^{2}$ for every $a \in \mathrm{R}$ ．This means that for every $\epsilon>0$ ，there exists a $\delta>0$ such that

$$
\left|f(x)-a^{2}\right|<\epsilon
$$

whenever
（A）$|x-a|<\delta$ ；
（B） $0<|x-a|<\delta$ ；
（C）$\left|x-a^{2}\right|<\delta$ ；
（D） $0<\left|x-a^{2}\right|<\delta$ ．

Ans：AB［103學年度］

