用書:Calculus(Early Transcendentals), James Stewart, 9th Edition
(◆ 標示之章節,由老師決定是否講授,不列入微積分會考範圍)
| 10. | Parametric Equations and Polar Coordinates -- 2 hours | 
| 10.3 Polar Coordinates | |
| 10.4 Calculus in Polar Coordinates | |
| 11. | Sequences, Series, and Power Series -- 15 hours | 
| 11.1 Sequences | |
| 11.2 Series | |
| 11.3 The Integral Test and Estimates of Sums | |
| 11.4 The Comparison Tests | |
| 11.5 Alternating Series and Absolute Convergence | |
| 11.6 The Ratio and Root Tests | |
| 11.7 Strategy for Testing Series | |
| 11.8 Power Series | |
| 11.9 Representations of Functions as Power Series | |
| 11.10 Taylor and Maclaurin Series | |
| 11.11 Applications of Taylor Polynomials | |
| 12.◆ | Vectors and the Geometry of Space -- 1 hours | 
| ◆ | 12.1 Three-Dimensional Coordinate Systems | 
| ◆ | 12.2 Vectors | 
| ◆ | 12.3 The Dot Product | 
| ◆ | 12.4 The Cross Product | 
| ◆ | 12.5 Equations of Lines and Planes | 
| ◆ | 12.6 Cylinders and Quadric Surfaces | 
| 13. | Vector Functions -- 3 hours | 
| 13.1 Vector Functions and Space Curves | |
| 13.2 Derivatives and Integrals of Vector Functions | |
| 13.3 Arc Length And ◆ Curvature | |
| ◆ | 13.4 Motion in Space: Velocity and Acceleration | 
| 14. | Partial Derivatives -- 16 hours | 
| 14.1 Functions of Several Variables | |
| 14.2 Limits and Continuity | |
| 14.3 Partial Derivatives | |
| 14.4 Tangent Planes and Linear Approximations | |
| 14.5 The Chain Rule | |
| 14.6 Directional Derivatives and the Gradient Vector | |
| 14.7 Maximum and Minimum Values | |
| 14.8 Lagrange Multipliers | |
| 15. | Multiple Integrals -- 11 hours | 
| 15.1 Double Integrals over Rectangles | |
| 15.2 Double Integrals over General Regions | |
| 15.3 Double Integrals in Polar Coordinates | |
| ◆ | 15.4 Application of Double Integrals | 
| 15.5 Surface Area | |
| 15.6 Triple Integrals | |
| 15.7 Triple Integrals in Cylindrical Coordinates | |
| 15.8 Triple Integrals in Spherical Coordinates | |
| 15.9 Change of Variables in Multiple Integrals | |
| 16. | Vector Calculus | 
| ◆ | 16.1 Vector Fields | 
| ◆ | 16.2 Line Integrals | 
| ◆ | 16.3 The Fundamental Theorem for line integrals | 
| ◆ | 16.4 Green’s Theorem | 
說明:
- 第一學期課程規劃 52小時,其餘時間由任課老師運用:演習課,考試,進度調整。
- 向量分析與常微分方程因時間因素省略,在二年級需有其他課程搭配。
- 課程內之定理與性質,強調在說明與講述其內容。
- 學期末有一次期末會考,題型為選擇、填空或計算/證明題;以鑑別基本觀念與計算能力為準。會考成績為微積分獎給獎依據。
