用書:Calculus(Early Transcendentals), James Stewart, 9th Edition
(◆ 標示之章節,由老師決定是否講授,不列入微積分會考範圍)
10. | Parametric Equations and Polar Coordinates -- 2 hours |
10.3 Polar Coordinates | |
10.4 Calculus in Polar Coordinates | |
11. | Sequences, Series, and Power Series -- 15 hours |
11.1 Sequences | |
11.2 Series | |
11.3 The Integral Test and Estimates of Sums | |
11.4 The Comparison Tests | |
11.5 Alternating Series and Absolute Convergence | |
11.6 The Ratio and Root Tests | |
11.7 Strategy for Testing Series | |
11.8 Power Series | |
11.9 Representations of Functions as Power Series | |
11.10 Taylor and Maclaurin Series | |
11.11 Applications of Taylor Polynomials | |
12.◆ | Vectors and the Geometry of Space -- 1 hours |
◆ | 12.1 Three-Dimensional Coordinate Systems |
◆ | 12.2 Vectors |
◆ | 12.3 The Dot Product |
◆ | 12.4 The Cross Product |
◆ | 12.5 Equations of Lines and Planes |
◆ | 12.6 Cylinders and Quadric Surfaces |
13. | Vector Functions -- 3 hours |
13.1 Vector Functions and Space Curves | |
13.2 Derivatives and Integrals of Vector Functions | |
13.3 Arc Length And ◆ Curvature | |
◆ | 13.4 Motion in Space: Velocity and Acceleration |
14. | Partial Derivatives -- 16 hours |
14.1 Functions of Several Variables | |
14.2 Limits and Continuity | |
14.3 Partial Derivatives | |
14.4 Tangent Planes and Linear Approximations | |
14.5 The Chain Rule | |
14.6 Directional Derivatives and the Gradient Vector | |
14.7 Maximum and Minimum Values | |
14.8 Lagrange Multipliers | |
15. | Multiple Integrals -- 11 hours |
15.1 Double Integrals over Rectangles | |
15.2 Double Integrals over General Regions | |
15.3 Double Integrals in Polar Coordinates | |
◆ | 15.4 Application of Double Integrals |
15.5 Surface Area | |
15.6 Triple Integrals | |
15.7 Triple Integrals in Cylindrical Coordinates | |
15.8 Triple Integrals in Spherical Coordinates | |
15.9 Change of Variables in Multiple Integrals | |
16. | Vector Calculus |
◆ | 16.1 Vector Fields |
◆ | 16.2 Line Integrals |
◆ | 16.3 The Fundamental Theorem for line integrals |
◆ | 16.4 Green’s Theorem |
說明:
- 第一學期課程規劃 52小時,其餘時間由任課老師運用:演習課,考試,進度調整。
- 向量分析與常微分方程因時間因素省略,在二年級需有其他課程搭配。
- 課程內之定理與性質,強調在說明與講述其內容。
- 學期末有一次期末會考,題型為選擇、填空或計算/證明題;以鑑別基本觀念與計算能力為準。會考成績為微積分獎給獎依據。