1  2  3  4  5  6  7  8  9   Contents

自然界中的費氏數

        自然界中到處可見費氏數列的蹤跡。樹技上的分枝數,多數花的瓣數都是費氏數:火鶴 1、百合 3,梅花 5,桔梗常為 8,金盞花 13,…等等。費氏數列也出現在松果上。一片片的鱗片在整粒松果上順著兩組螺線排列:一組呈順時針旋轉,另一組呈反時針,請參 考 http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html#pinecones 網頁上的圖;仔細瞧瞧,順時針螺線的排列數目是 8,反時針方向則為 13,而另一組常出現的數字是「5 8」。向日葵也是一樣,常見的螺線數目為「34 55」,較大的向日葵的螺線數目則為「89 144」,更大的甚至還有「144 233」。這些全都是費氏數列中相鄰兩項的數值。數數看,下圖這朵向日葵的螺線數目是 多少?

 大部份雛菊的螺線數目則是「21 34」:

 

也有些品種雛菊的螺線數目是「13 21」: 

 

為什麼呢?

         植物是以種子和嫩芽開始生長;種子發芽後,很多細根會長出來,並且向地底下生長,而嫩芽則是迎向陽光。 

        如果用顯微鏡觀察新芽的頂端,你可以看到所有植物的主要徵貌的生長過程——包括葉子、花瓣、萼片、小花(floret)等等。在頂端的中央,有一個圓形的組織稱為「頂尖」(apex);而在頂尖的周圍,則有微小隆起物一個接一個的形成,這些隆起則稱為「原基」(primordium)。

        成長時,每一個原基自頂尖移開(頂尖從隆起處向外生長,新的原基則在原地);最後,這些隆起原基會長成葉子、花瓣、萼片等等。每個原基都希望生成的花、蕊、或葉片等等,之後能夠獲得最大的生長空間。例如葉片希望得到充足的陽光,根部則希望得到充足的水份,花瓣或花蕊則希望充份地自我展現好吸引昆蟲來傳粉。因此,原基與原基隔得相當開,由於較早產生的原基移開的較遠,所以你可以從它與頂尖之間的距離,來推斷出現的先後次序。另人驚奇的是,我們若依照原基的生成時間順序描出原基的位置,便可畫出一條捲繞得非常緊的螺線——稱為「生成螺線」generative spiral)。

        之前我們提到過的左右旋螺線,雖然能夠明顯到讓人一眼看出(植物學家稱之為「斜列線」parastichy),但那並不是植物的原基生長模式的實際表徵;就某種程度而言,這些螺線只是視學上的錯覺。人的眼睛之所以能分辨出斜列線,是因為斜列線是由相鄰的原基所形成。


 

        晶體學先驅布拉菲兄弟(Auguste and Louise Bravais)發現原基沿生成螺線交錯排列的數學規則。他們量測相鄰兩原基之間的角度,發現量得的各個角度非常相近;這些角的共同值就稱為「發散角」(divergence angle)。 

        想像從原基的中心各畫一條直線連到頂尖的中心,然後測量這兩條線的夾角。如下圖中編號 29 的原基與編號 30 的原基之間的角度,及編號 30 31 的原基之間的角度。

他們並且發現發散角往往非常接近 137.5 度(或 222.5 度,如果從另一邊量起),也就是 ――「黃金角」。 
 

        如果我們將一個圓分成兩個弧,而兩個弧的長度比為黃金比例,小弧的圓心角我們稱之為黃金角。如下圖:

由此可知,圓周與大弧長度的比亦為黃金比例,而大弧的圓心角之弳度量即為 。那麼黃金角有多大呢?經過計算:360˚ – 360˚/Φ 大約是 137.5 度。
 

        一九○七年,數學家易特生G. Van Iterson)在一條繞得很緊的螺線上,每隔 137.5 度畫一個點。結果他發現,由於這些點的排列方式特殊,因此眼睛會看到兩組互相交錯的螺線——一組是順時鐘旋轉,另一組是逆時鐘(如下圖)。又因為費布納西數與黃金數密切相關,所以兩組螺線的數目是相鄰的費布納西數。究竟是哪些費布納西數,則要看螺線的旋轉有多緊密。

 

Previous    Next    Contents